Role of Helicity on the Anticancer Mechanism of Action of Cationic-Helical Peptides
نویسندگان
چکیده
In the present study, the 26-residue amphipathic α-helical peptide A12L/A20L (Ac-KWKSFLKTFKSLKKTVLHTLLKAISS-amide) with strong anticancer activity and specificity was used as the framework to study the effects of helicity of α-helical anticancer peptides on biological activities. Helicity was systematically modulated by introducing d-amino acids to replace the original l-amino acids on the non-polar face or the polar face of the helix. Peptide helicity was measured by circular dichroism spectroscopy and was demonstrated to correlate with peptide hydrophobicity and the number of d-amino acid substitutions. Biological studies showed that strong hemolytic activity of peptides generally correlated with high hydrophobicity and helicity. Lower helicity caused the decrease of anti-HeLa activity of peptides. By introducing d-amino acids to replace the original l-amino acids on the non-polar face or the polar face of the helix, we improved the therapeutic index of A12L/A20L against HeLa cells by 9-fold and 22-fold, respectively. These results show that the helicity of anticancer peptides plays a crucial role for biological activities. This specific rational approach of peptide design could be a powerful method to improve the specificity of anticancer peptides as promising therapeutics in clinical practices.
منابع مشابه
Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework.
In the present study, the hydrophobicity of a 26-residue α-helical peptide (peptide P) was altered to study the effects of peptide hydrophobicity on the mechanism of action of cationic anticancer peptides. Hydrophobicity of the nonpolar face of the peptides was shown to correlate with peptide helicity. The self-association ability of peptides in aqueous environment, determined by the reversed-p...
متن کاملTherapeutic Discovery Studies on Mechanism of Action of Anticancer Peptides by Modulation of Hydrophobicity Within a Defined Structural Framework
In the present study, the hydrophobicity of a 26-residuea-helical peptide (peptideP)was altered to study the effects of peptide hydrophobicity on the mechanism of action of cationic anticancer peptides. Hydrophobicity of the nonpolar face of the peptideswas shown to correlate with peptide helicity. The self-association ability of peptides in aqueous environment, determined by the reversed-phase...
متن کاملThe study of single anticancer peptides interacting with HeLa cell membranes by single molecule force spectroscopy.
To determine the effects of biophysical parameters (e.g. charge, hydrophobicity, helicity) of peptides on the mechanism of anticancer activity, we applied a single molecule technique-force spectroscopy based on atomic force microscope (AFM)-to study the interaction force at the single molecule level. The activity of the peptide and analogs against HeLa cells exhibited a strong correlation with ...
متن کاملEnantiomeric Effect of d-Amino Acid Substitution on the Mechanism of Action of α-Helical Membrane-Active Peptides
V13K, a 26-residue peptide, has been shown to have strong antimicrobial activity, negligible hemolytic activity, and significant anticancer activity. In the present work, V13K was used as the framework to investigate the influence of helicity, as influenced by d-amino acid substitutions in the center of the peptide polar and non-polar faces of the amphipathic helix, on biological activity. The ...
متن کاملTryptophan as a probe to study the anticancer mechanism of action and specificity of α-helical anticancer peptides.
In the present study, a single tryptophan, as a fluorescence probe, was shifted from the N-terminus to the middle and to the C-terminus of a 26-residue α-helical anticancer peptide sequence to study the mechanism of action and specificity. The hydrophobicity of peptides, as well as peptide helicity and self-associating ability, were slightly influenced by the position change of tryptophan in th...
متن کامل